The 8th Asia-Pacific Workshop on Networking (APNet 2024)

Plii

Massachusetts Institute of Technology

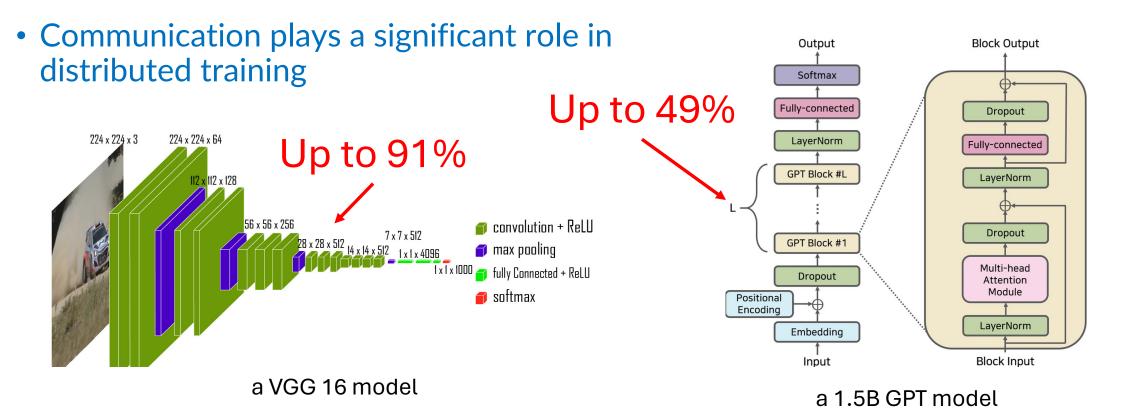
Understanding Communication Characteristics of Distributed Training

Wenxue Li¹, Xiangzhou Liu¹, Yuxuan Li¹, Yilun Jin¹, Han Tian², Zhizhen Zhong³, Guyue Liu⁴, Ying Zhang⁵, Kai Chen¹

¹iSING Lab, Hong Kong University of Science and Technology, ²University of Science and Technology of China, ³MIT, ⁴Peking University, ⁵Meta

Communication Matters in DNN Training

- Deep Neural Networks (DNNs) are increasingly adopted as fundamental building blocks in various modern services
- DNN training is essential in producing high-quality deep learning services



Prior Analysis Overlooks Critical Factors

- ingLab
- Many works aim to reduce the communication time in training, under specific model architectures or hardware platforms; do not provide a comprehensive overview of the communication characteristics
- Prior characteristics analysis works overlooks several critical factors

Cluster-level measurement works

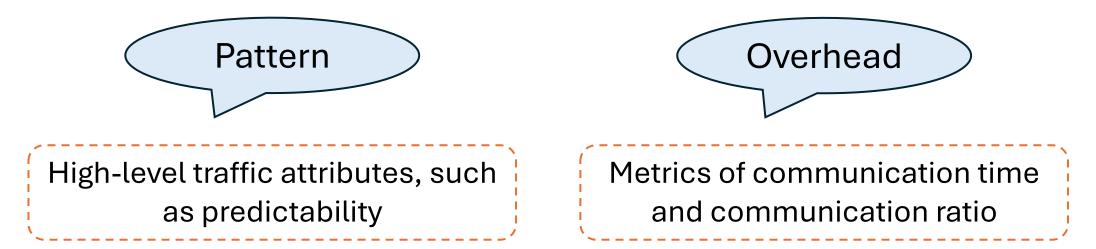
- Viewe the entire training job as the basic unit
- Primarily assess cluster-level metrics like job completion time and cluster utilization;
- Miss the fine-grained features within individual training jobs

Works focusing on within-job scenarios

- Also miss various key factors
- Some only focus on data parallelism, ignoring model parallelism
- Some directly integrate the peak link capacity into analysis, overlooking the impact of various factors on bandwidth utilization.

We aim to conduct **a systematical exploration of the communication characteristics** of distributed training

- Our focus: individual job scenarios and fine-grained within-job features
- We analyze the communication through two aspects: (1) pattern and (2) overhead.

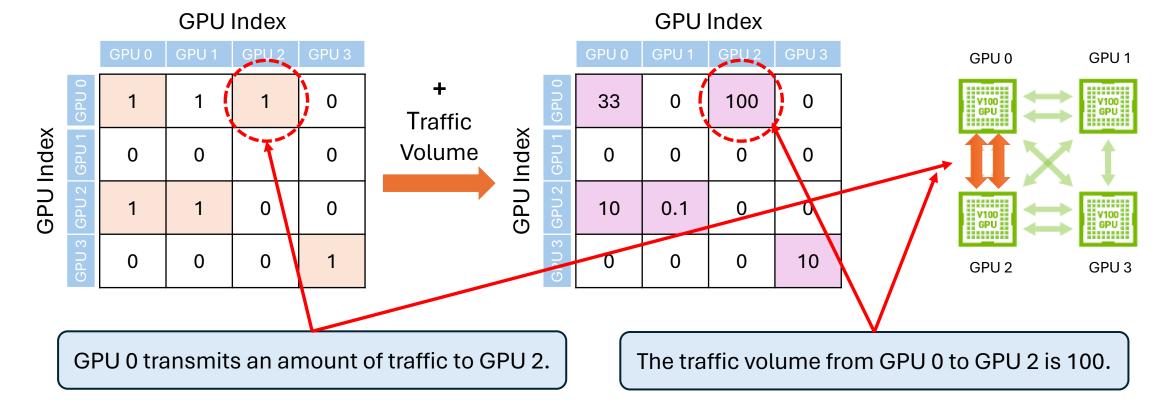


Communication Pattern of Densely-activated Models

• Two primary elements of pattern: communication matrix and traffic volume

IngLab

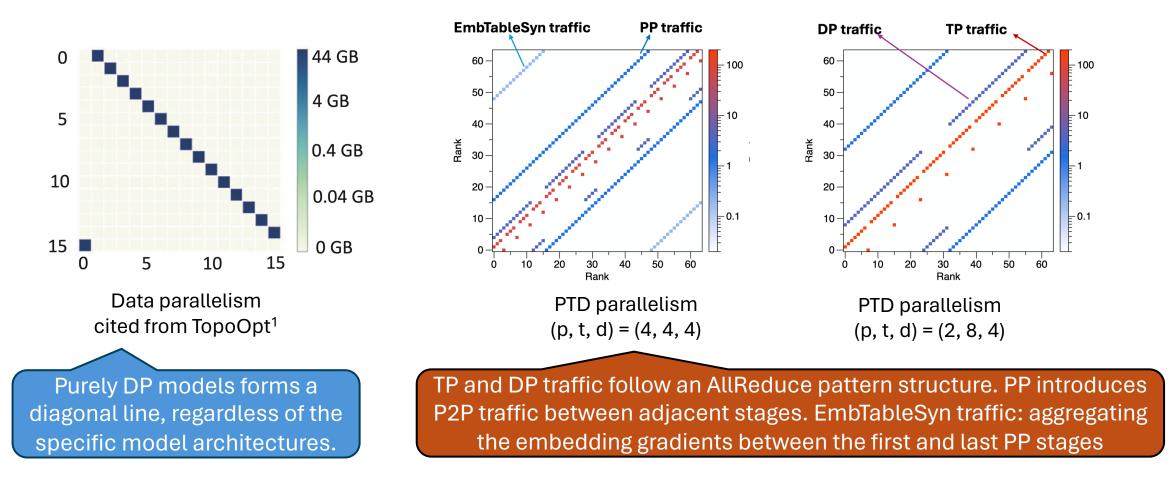
HKUST



• For densely-activated models, both the communication matrix and traffic volume are predictable.

Communication Matrix

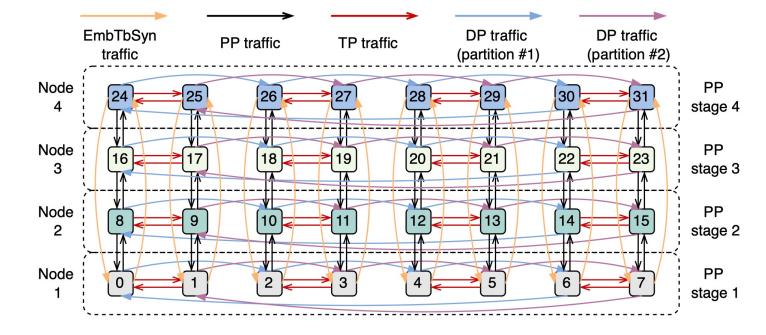
• Parallelism configuration determines the communication matrix.



¹TOPOOPT: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs, NSDI 2023

Communication Matrix (Cont.)

- Given a parallelism configuration, communication matrix can be directly determined without running the model and conducting online profiling.
 - (1) Logical parallelism configuration
 - (2) Mapping principle from logical parallelism to physical hardware platform



The GPU organization of a logical parallelism (p, t, d) = (4, 2, 4) on 32 GPUs

 \circ GPUs → several **PP Stages**

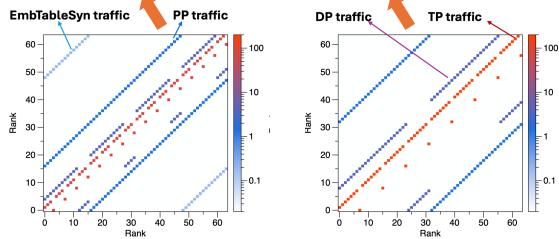
- Within each stage → several TP groups and DP groups
- Each GPU simultaneously belongs to only one TP stage, one TP group, and one DP group
- Adjacent PP stages: P2P traffic
- TP groups: AllReduce traffic
- DP groups: AllReduce traffic

Traffic Volume

- Model's internal architecture influences the traffic volume on GPU pairs.
- Given the model architecture and parallelism configuration, the traffic volume is computable.

	Purely DP models	Traffic volume = No. of parameters x parameter precision x $\frac{2(d-1)}{d}$
10	GPT models with PTD	Given the determined model architecture (N, l, h, s, gb, b, m) and parallelism configuration (p, t, d) , the traffic volume on each
15 0 5 10 15	parallelism	GPU pair can be precisely calculated.

Notation	Explanation
p, t, d	(p, t, d) for the pipeline parallel size, tensor parallel size,
	and data parallel size, respectively.
Ν	Total number of model parameters.
l	Number of transformer block layers
h	Hidden size
S	Sequence length
gb, b	Global and micro-batch size, respectively
m	Number of micro-batches per iteration

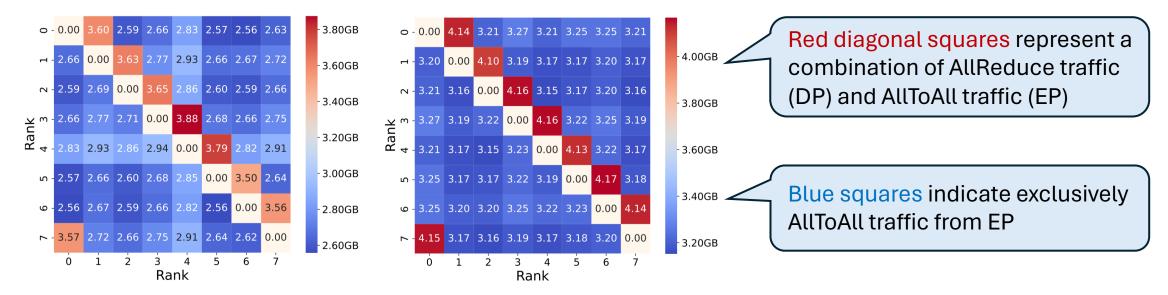


sparsely-activated models.
Training large MoE models → expert parallelism (EP)

• The MoE structure is a popular way to implement

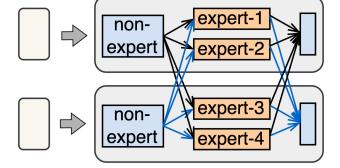
introducing AllToAll communication

AllToAll traffic makes MoE training with dynamic communication patterns



Traffic heatmaps of a 760M MoE model at different iterations

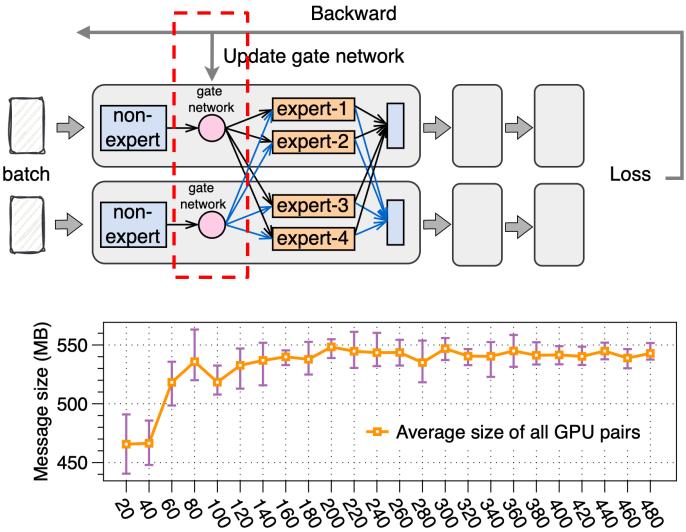
Communication Pattern of Sparsely-activated Models



Semi-predictability of MoE Models

- The gate network is trained to achieve load balancing of traffic across experts¹.
 - The loss function is related to load balancing
- This leads to the increasing uniformity in AllToAll traffic patterns as training progresses.
- Average AllToAll traffic volume and variance during a MoE-1.3B model's training with (e, d) = (8,8) [first 500 iterations]

¹Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. Journal of Machine Learning Research 2022

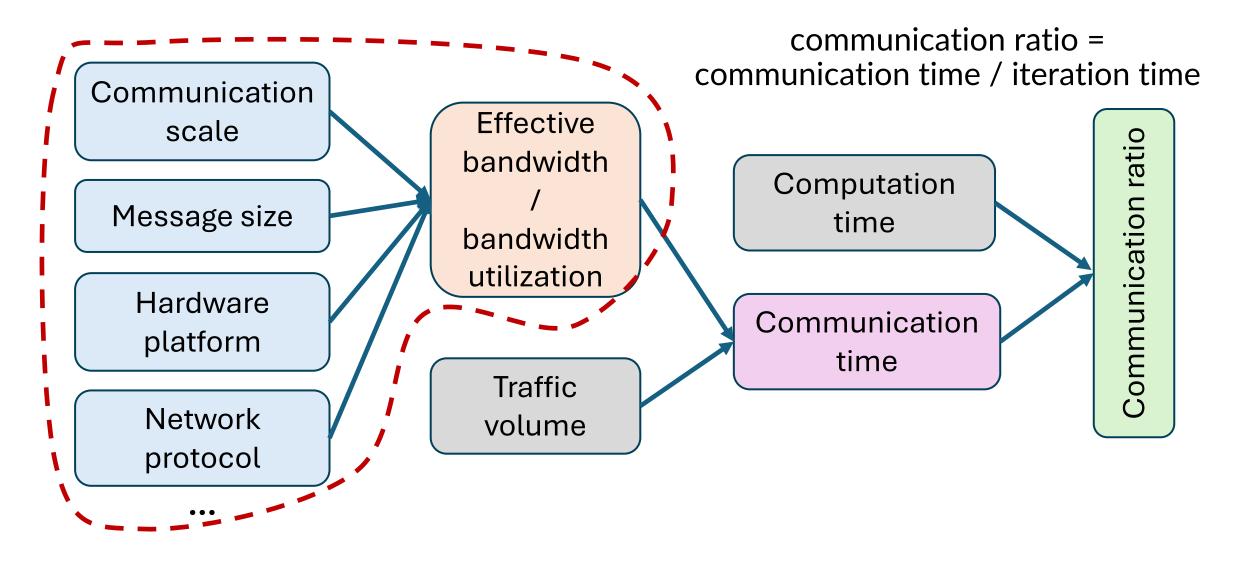


Iteration

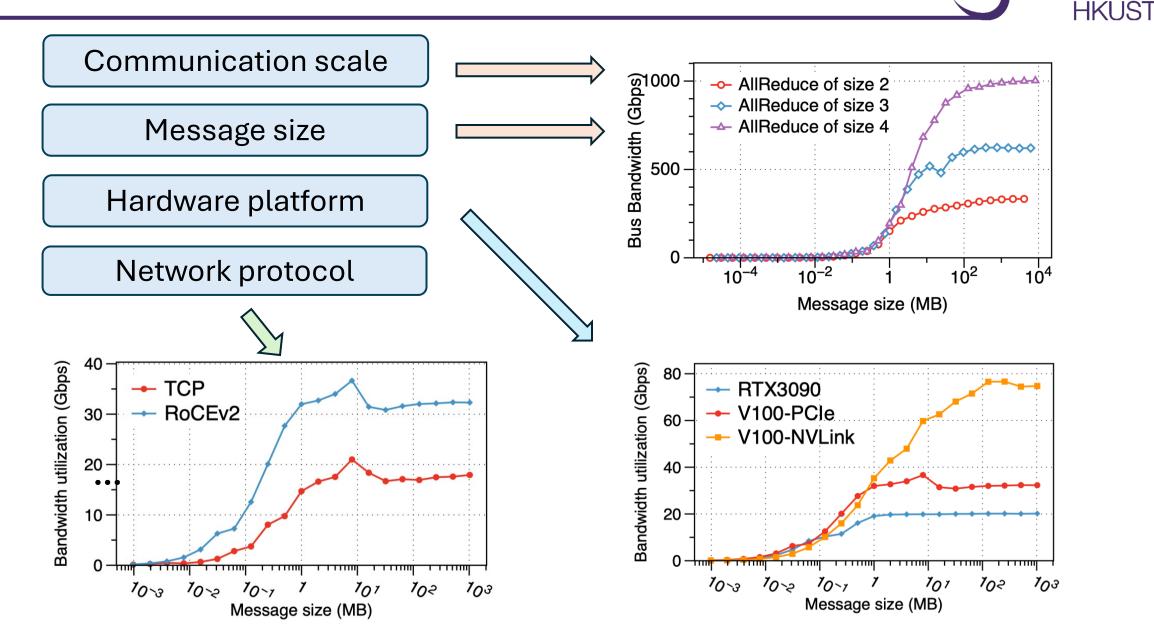
Other Characteristics

- Regularity (on-off pattern)
 - CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters, NSDI 2024
 - ...
- Low entropy
 - RDMA over Ethernet for Distributed AI Training at Meta Scale, SIGCOMM 2024
 - ...
- Loss tolerance
 - Towards Domain-Specific Network Transport for Distributed DNN Training, NSDI 2024
 - ...
- •

Factors on Communication Overhead



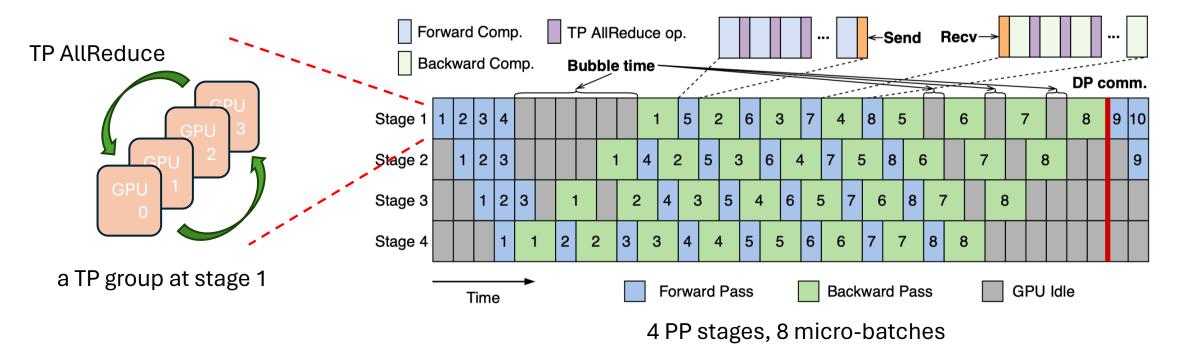
Factors on Effective Bandwidth



_ab

Communication Overhead Estimation

• We propose an analytical formulation to estimate the communication overhead (time & ratio) of GPT models with PTP parallelism



HKUST

• Iteration time = total working time of any GPUs at stage 1 (e.g., GPU 0)

 $T_{iter} = T_{comp} + T_{TP} + T_{PP} + T_{DP} + T_{bubble}$

Communication Overhead Estimation (Cont.)

 T_{comp} μ : GPU utilization rate Computation requirement for each micro- $FLOP_{required}^{mb} = 8 \times \frac{N}{p \times t} \times b \times s$ batch¹: $\frac{m \times FLOP_{required}^{mb}}{\mu F} = \frac{8m \times N \times b \times s}{n \times t \times \mu F}$ Time: $T_{comp} =$ T_{bubble} $T_{bubble} = (p-1) \times (T_{comp}^{mb} + T_{PP}^{mb} + T_{TP}^{mb})$ $R_{bubble} = T_{bubble} / T_{iter} \approx (p-1) / (p-1+m)$

¹Efficient Large-scale Language Model Training on GPU Clusters Using Megatron-LM, SC 2021

•
$$T_{TP}, T_{PP}, T_{DP}$$

Traffic volume
 $T_{DP} = \frac{2N}{p \times t} \times \frac{2(d-1)!}{d \times C_{DP}}$
 $T_{PP} = m \times T_{PP}^{mb} = m \times \frac{2 \times 2bsh}{C_{PP}}$
 $T_{TP} = m \times T_{TP}^{mb} = m \times \frac{l}{p} \times \frac{6 \times 2bsh \times 2(t-1)}{t \times C_{TP}}$

HKUST

Notation	Explanation
<i>p</i> , <i>t</i> , <i>d</i>	(p, t, d) for the pipeline parallel size, tensor parallel size,
	and data parallel size, respectively.
N	Total number of model parameters.
l	Number of transformer block layers
h	Hidden size
S	Sequence length
<i>gb</i> , <i>b</i>	Global and micro-batch size, respectively
m	Number of micro-batches per iteration
$C_{TP,PP,DP}$	Effective bandwidth utilization of TP, PP, DP
F	GPU computation capacity (<i>i.e.</i> , peak FP16 FLOP/s)

Accuracy of Estimation

- Estimations from analytical formulation vs. measured realistic data
- Separately evaluate T_{comp} , T_{comm} (T_{TP} + T_{PP} + T_{DP}), R_{comm} ($\frac{T_{comm}}{T_{iter}}$), and R_{bubble}

Computation Time

20

10

0.3

0.2

0.1

0

Bubble Ratio

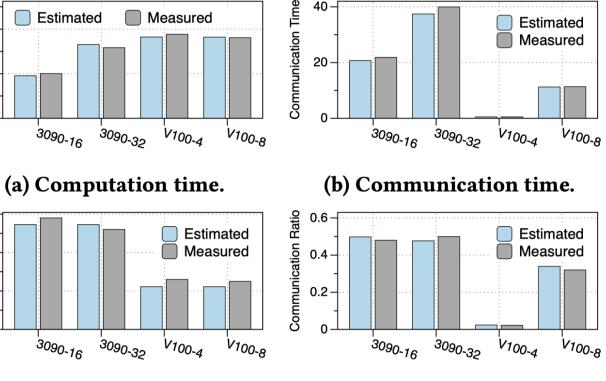
Estimated

. 3090-16

³⁰⁹⁰⁻¹⁶

Measured

- Four experimental configurations:
 - 16 RTX3090s, 1.5B GPT model
 - 32 RTX3090s, 3B GPT model
 - 4 V100s, 1.5B GPT model
 - 8 V100s, 3B GPT model
- Config. of μ and C (C_{TP} , C_{DP} , C_{PP}): apply a μ of 0.3 for RTX3090 and 0.4 for V100; *C* is profiled using NCCL micro-benchmarks
- The formulation achieves ~90% accuracy across our experiments.



20 -

(c) Bubble ratio.

(d) Communication ratio.

Estimated

Measured

Conclusion

- We present a comprehensive analysis of the traffic predictability of denselyactivated models and show the existence of dynamic traffic pattern and increasing uniformity in MoE model training.
- We experimentally evaluate the influence of various factors on the effective bandwidth (further influencing the communication overhead).
- We propose an analytical formulation to estimate communication overhead for GPT models

A systematical exploration is **still ongoing**, and the results and analysis presented in the APNET paper are quite preliminary.

_ _ _ _ _ _ _ _ _ _ _

Future Works

- (1) Broaden our experimental setting to incorporate more advanced GPUs and larger training scales to verify our current findings
- (2) Conduct an in-depth exploration on two critical factors used in our analytical formulation
 - GPU utilization rate (μ)
 - Effective bandwidth (*C*)
- Maybe more ...

Thank you.