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Communication Matters in DNN Training

• Deep Neural Networks (DNNs) are increasingly adopted as fundamental 
building blocks in various modern services
• DNN training is essential in producing high-quality deep learning services

• Communication plays a significant role in 
distributed training

Up to 91%
Up to 49%

a VGG 16 model a 1.5B GPT model



Prior Analysis Overlooks Critical Factors

• Many works aim to reduce the communication time in training, under 
specific model architectures or hardware platforms; do not provide a 
comprehensive overview of the communication characteristics
• Prior characteristics analysis works overlooks several critical factors

• Viewe the entire training job as the 
basic unit

• Primarily assess cluster-level metrics 
like job completion time and cluster 
utilization; 

• Miss the fine-grained features 
within individual training jobs

• Also miss various key factors
• Some only focus on data parallelism, 

ignoring model parallelism
• Some directly integrate the peak link 

capacity into analysis, overlooking 
the impact of various factors on 
bandwidth utilization.

Cluster-level measurement works Works focusing on within-job scenarios 



Our Goal

We aim to conduct a systematical exploration of the communication 
characteristics of distributed training

• Our focus: individual job scenarios and fine-grained within-job features
• We analyze the communication through two aspects: (1) pattern and (2) 

overhead.

High-level traffic attributes, such 
as predictability

Metrics of communication time 
and communication ratio

OverheadPattern



Communication Pattern of Densely-activated Models

• Two primary elements of pattern: communication matrix and traffic volume
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• For densely-activated models, both the communication matrix and traffic 
volume are predictable.

GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 transmits an amount of traffic to GPU 2. The traffic volume from GPU 0 to GPU 2 is 100.



Communication Matrix

• Parallelism configuration determines the communication matrix.

Data parallelism
cited from TopoOpt1

PTD parallelism 
(p, t, d) = (4, 4, 4)

PTD parallelism 
(p, t, d) = (2, 8, 4)

1TOPOOPT: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs, NSDI 2023

Purely DP models forms a 
diagonal line, regardless of the 
specific model architectures.

TP and DP traffic follow an AllReduce pattern structure. PP introduces 
P2P traffic between adjacent stages. EmbTableSyn traffic: aggregating 

the embedding gradients between the first and last PP stages



Communication Matrix (Cont.)

• Given a parallelism configuration, communication matrix can be directly 
determined without running the model and conducting online profiling.
• (1) Logical parallelism configuration 
• (2) Mapping principle from logical parallelism to physical hardware platform

The GPU organization of a logical parallelism (p, t, d) = (4, 2, 4) on 32 GPUs

o GPUs à several PP Stages

o Within each stage à several TP 
groups and DP groups 

o Each GPU simultaneously 
belongs to only one TP stage, 
one TP group, and one DP group

o Adjacent PP stages: P2P traffic

o TP groups: AllReduce traffic
o DP groups: AllReduce traffic 



Traffic Volume

• Model’s internal architecture influences the traffic volume on GPU pairs.
• Given the model architecture and parallelism configuration, the traffic volume 

is computable.
Traffic volume = No. of parameters x parameter precision x !(#$%)

#

Given the determined model architecture 𝑁, 𝑙, ℎ, 𝑠, 𝑔𝑏, 𝑏,𝑚  and 
parallelism configuration 𝑝, 𝑡, 𝑑 , the traffic volume on each 
GPU pair can be precisely calculated.

Purely DP 
models

GPT models 
with PTD 
parallelism



Communication Pattern of Sparsely-activated Models

• The MoE structure is a popular way to implement 
sparsely-activated models.
• Training large MoE models  expert parallelism (EP) 

 introducing AllToAll communication

• AllToAll traffic makes MoE training with dynamic communication patterns

Traffic heatmaps of a 760M MoE model at different iterations

Blue squares indicate exclusively 
AllToAll traffic from EP

Red diagonal squares represent a 
combination of AllReduce traffic 
(DP) and AllToAll traffic (EP)



Semi-predictability of MoE Models

• The gate network is trained to 
achieve load balancing of 
traffic across experts1.
• The loss function is related to 

load balancing

• This leads to the increasing 
uniformity in AllToAll traffic 
patterns as training 
progresses.
• Average AllToAll traffic 

volume and variance during a 
MoE-1.3B model’s training 
with 𝑒, 𝑑 = 8, 8  [first 500 
iterations]

1Switch transformers: Scaling to trillion parameter models with simple and  
efficient sparsity. Journal of Machine Learning Research 2022



Other Characteristics

• Regularity (on-off pattern)
• CASSINI: Network-Aware Job Scheduling in Machine Learning Clusters, NSDI 2024
• ...

• Low entropy
• RDMA over Ethernet for Distributed AI Training at Meta Scale, SIGCOMM 2024
• ...

• Loss tolerance
• Towards Domain-Specific Network Transport for Distributed DNN Training, NSDI 2024
• ...

• ...



Factors on Communication Overhead
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Factors on Effective Bandwidth

Communication scale

Message size

Hardware platform

Network protocol

...



Communication Overhead Estimation

• We propose an analytical formulation to estimate the communication 
overhead (time & ratio) of GPT models with PTP parallelism

GPU
3GPU

2GPU
1GPU

0

TP AllReduce

a TP group at stage 1

• Iteration time = total working time of any GPUs at stage 1 (e.g., GPU 0)
4 PP stages, 8 micro-batches



Computation requirement for each micro-
batch1:

Communication Overhead Estimation (Cont.)

• 𝑇,-./ • 𝑇01, 𝑇11, 𝑇21

• 𝑇343356

Traffic volume

Effective 
bandwidth

1Efficient Large-scale Language Model Training on GPU Clusters Using     
Megatron-LM, SC 2021

𝜇: GPU utilization rate

Time:



Accuracy of Estimation

• Estimations from analytical formulation vs. measured realistic data
• Separately evaluate 𝑇,-./, 𝑇,-.. (𝑇01+ 𝑇11+ 𝑇21), 𝑅,-..(0!"##

0$%&'
), and 𝑅343356

• Four experimental configurations:
• 16 RTX3090s, 1.5B GPT model
• 32 RTX3090s, 3B GPT model
• 4 V100s, 1.5B GPT model
• 8 V100s, 3B GPT model

• Config. of 𝜇 and 𝐶 (𝐶01, C21, C11):  
apply a 𝜇 of 0.3 for RTX3090 and 
0.4 for V100; 𝐶 is profiled using 
NCCL micro-benchmarks
• The formulation achieves ~90% 

accuracy across our experiments.



Conclusion

• We present a comprehensive analysis of the traffic predictability of densely-
activated models and show the existence of dynamic traffic pattern and 
increasing uniformity in MoE model training.
• We experimentally evaluate the influence of various factors on the effective 

bandwidth (further influencing the communication overhead).
• We propose an analytical formulation to estimate communication overhead 

for GPT models

A systematical exploration is still ongoing, and the results and analysis 
presented in the APNET paper are quite preliminary.



Future Works

• (1) Broaden our experimental setting to incorporate more advanced GPUs 
and larger training scales to verify our current findings

• (2) Conduct an in-depth exploration on two critical factors used in our 
analytical formulation
• GPU utilization rate (𝜇) 
• Effective bandwidth (𝐶)

• Maybe more ...
Thank you.


