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Image by the courtesy of BFC (Goyal etc., NSDI 2022)

* Trend: Rapidly increasing link * Rising link speeds result in

speed (switch capacity). increasingly short flows

* However, switch buffer size lags potentially induce greater
behind switch capacity. burstiness in network traffic.




Insufficiency of End-to-End CC

* End-to-end CCs face challenges: senders need at least one RTT to
receive the receiver-echoed signals = a loss of control over short
flows.
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[Per—hop flow control (FC) is necessary.}




Existing Flow Control Schemes are Insufficient

* Per-hop FC controls upstream entity within a 1-Hop RTT.
1-Hop RTT (1~2 ps) <<< end-to-end RTT (tens of us)

* However, (<

» PFC is coarse-grained = Deadlock, Head-of-line blocking, etc.

» |deal FC allocates a dedicated queue to every flow = fine-grained
but impractical.

» SOTA FC scheme, BFC, demands too many queues and
compromises isolation granularity when queues are limited.



BFC compromises isolation granularity

* BFC dynamically assigns a dedicated queue to each active flow.

* However, when queues are limited, BFC permits multiple flows to
share a queue and manages all flows within the same queue

collectively

its performance critically depends on the # of available queues.
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Our Goal

-

o

Can we design an FC scheme that offers fine-grained control
(i.e., per-flow granularity) without requiring per-flow queues?

~

)

FlowSail



Opportunities of FlowSail

e Efficacy of the ideal FC comes from two key aspects.
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Opportunities of FlowSail

* Opportunities: it is possible to approximate the behavior of the ideal
FC without requiring per-flow queues.
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each flow’s buffer size.



Comparison between BFC and FlowSail

* BFC: manages all flows within the same queue collectively, leading to
an unfair degradation of 2, {3, f5.

* FlowSail: approximate the per-flow level granularity (ideal FC).
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Design of FlowSail

#1. Define flows |
at the granularity
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#2. Hierarchical: egress queue length is the primary
congestion signal; Flow size is in a secondary level decision.

#3. re-assign
congested
flows and
guarantee in-
order
delivery.



Hierarchical Congested Flow Identification

[ For each flow J

¢ Q1 < Q < Qn: FlowSail only sends
PAUSE to flow that occupies more l
than Sfair,a . %
 Hardware-friendly shifting operation gt Db P
and logarithm (counting the number J,

of nonzero bits of data)

Queue Yes Flow size
Length — > > S_fair

Stair = Q >> [logy(QT [qldx]. flowNum)]| ~a.

e (Q > Qn: FlowSail pauses all passing J7NO J:
flows to avoid severe buffer overflow. [ o acton oAUSE




On-demand Isolation
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.{ If flow has buffered packets in original queue (e.g., q1): enqueues an Order Mark |
. Pair to g1 and rsvQ and ensure in-order delivery via Order Mark Matching. :



Order Mark Matching

* Every pair of Order Mark (OM) is unique (OM carries FID).
* The OM packet in rsvQ must wait for another matched OM before its
transmission begins.
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* Implementations details in the paper.



Evaluation: Web Server Distribution

* Short flows (< 10KB) and large flows (> 100KB).

* FlowSail outperforms BFC (4.3x) and all end-to-end CCs (e.g., 3.2x
compared to DCTCP) in terms of latency for short flows.

 Similar performance in throughput.
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Evaluation: Web Search Distribution
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Conclusion

* FlowSail is a fine-grained flow control scheme at the per-flow

granularity without the requirement of per-flow queues.

* The core of FlowSail is to effectively approximate the ideal FC’s

behavior at both the congested port and upstream port.

* FlowSail benefits short flows primarily without trading off large

flows’ throughput.

Thank you!
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