The 2025 USENIX Annual Technical Conference (ATC 2025)

FLB: Fine-grained Load Balancing for Lossless Datacenter Networks

Jinbin Hu^{1,2,3*}, Wenxue Li^{2*}, Xiangzhou Liu², Junfeng Wang², Bowen Liu², Ping Yin⁴, Jianxin Wang¹, Jiawei Huang¹, Kai Chen²

¹Central South University
²iSING Lab, Hong Kong University of Science and Technology
³Changsha University of Science and Technology
⁴Inspur

Lossless RDMA Network and Load Balancing

- RDMA over Converged Ethernet (RoCE) is widely deployed
 - Microsoft Azure [1]; Alibaba Cloud [2];
 Google cloud [3]
- RoCE employs priority flow control (PFC) to enable a lossless fabric

Load balancing (i.e., multipath transmission)
is important because modern datacenters
usually provide multiple parallel paths

Nvidia Superpod [4]

- [1] https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
- [2] https://www.alibabacloud.com/product/scc
- [3] https://cloud.google.com

[4] https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/network-fabrics.html

Existing LB Schemes are Inefficient in Lossless RDMA Networks — Reason #1

Inflexible rerouting leads to load imbalance and link under-utilization

Small-scale Testbed Experiments.

Transport implemented by using DPDK and P4 switch.

ECMP:

- In some round, *f1* and *f2* are hashed to P2 by coincidence, causing congestion.
- ECMP cannot reroute *f1/f2* after congestion

Existing LB Schemes are Inefficient in Lossless RDMA Networks – Reason #1 (Cont.)

Inflexible rerouting leads to load imbalance and link under-utilization

[1] Let it flow: resilient asymmetric load balancing with flowlet switching, NSDI 2017 [2] Multi-Path Transport for RDMA in Datacenters, NSDI 2018

LetFlow^[1] (Flowlet-based LB):

- The entire f1/f2 is treated as one flowlet.
- In some round, f1 and f2 are mapped to P2 by coincidence, causing congestion
- LetFlow cannot reroute *f1* after congestion due to the lack of flowlet in RDMA traffic^[2].

Existing LB Schemes are Inefficient in Lossless RDMA Networks — Reason #2

Multi-path transmission expands the influence scope of PFC's HoL blocking

An extreme case:

H0~H30 simultaneously transmit traffic to H31, creating a long-living 31-to-1 incast pattern.

(a) Topology and workload (H0~H30 send traffic to H31)

- ECMP causes about 70 paths being paused.
- Packet spraying results in all paths (about 340 paths) being paused as the data is spread across all paths
- CC cannot quickly eliminate congestion and stop the PFC pausing

Can we design a load balancing scheme for PFC-enabled lossless DCNs that <u>achieves high link utilization</u> while <u>eliminating PFC side effects?</u>

Goal #1: Flexibly reroute the traffic to effectively balance load and enhance link utilization

Goal #2: Eliminate the head-of-line (HoL) blocking and congestion spreading during PFC triggering

Goal #3: Reduce dependency on complex congestion control schemes

Key idea of FLB (Fine-grained Load Balancing)

Ideal situation

When there is no congestion:

All packets should be transmitted via multiple paths

When congestion happens:

The packets of congested flows should be transmitted using single path to avoid congestion spreading

- ✓ Uncongested flows: multi-path
- ✓ Congested flows: single-path

Key idea of FLB (Fine-grained Load Balancing) (Cont.)

Routing/Rerouting Module

ingLab HKUST

Isolation Module

Implementation and Evaluation

We implement FLB using Wedge 100BF-32X programmable switch

Table 1: Resource consumption of different schemes.

Resource	ECMP	LetFlow	FLB
Match Crossbar	2.41%	4.82%	5.82%
Hash Bits	3.08%	5.67%	5.87%
Gateway	1.39%	2.96%	9.56%
SRAM	1.56%	3.33%	4.12%
VLIW Actions	1.56%	2.34%	3.34%
ALU Instruction	2.6%	5.2%	8.2%

- Testbed server specification:
 - Mellanox ConnectX-5 NICs;
 - DPDK 20.08

Realistic workload:

- H0~H16 generate dynamic traffic according to the Web Search workload;
- H3~H16 are burst flows

Evaluation (Cont.)

--- More in paper!

Path level metrics:

FLB achieves higher link utilization on different paths than the other schemes

Flow level metrics:

FLB achieves the lowest average and 99th percentile FCTs of all flows

FLB reduces the AFCT by up to 48%

The 2025 USENIX Annual Technical Conference (ATC 2025)

Thank you!

Please refer to our paper for further information.

Please contact <u>jinbinhu@ust.hk</u> or <u>wlicv@connect.ust.hk</u> if you are interested.