The 30th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024)



#### Cepheus: Accelerating Datacenter Applications with High-Performance RoCE-Capable Multicast

Wenxue Li<sup>1</sup>\*, Junyi Zhang<sup>2,3</sup>\*, Yufei Liu<sup>2</sup>, Gaoxiong Zeng<sup>2</sup>, Zilong Wang<sup>1</sup>, Chaoliang Zeng<sup>1</sup>, Pengpeng Zhou<sup>2</sup>, Qiaoling Wang<sup>2</sup>, Kai Chen<sup>1,3</sup>

> <sup>1</sup>iSING Lab, Hong Kong University of Science and Technology, <sup>2</sup>Huawei, <sup>3</sup>USTC, <sup>\*</sup>Equal contribution

# One-to-many Communication is Prevalent



- Modern datacenter (DC) applications widely exhibit multicast communication patterns.
  - Replications distribution in distributed storage system
  - HPC applications, e.g., High-performance Linpack (HPL) benchmark



Block Storage system

PF, PB, RS phases during a HPL epoch

• An efficient multicast primitive substantially benefit DC applications.

# RDMA: De-facto Networking Tech in DCs



3

- RDMA is emerging as the de-facto networking technology in DCs, to meet the stringent communication requirements from applications.
- RDMA over Converged Ethernet (RoCE)<sup>1</sup>: an RDMA transport protocol

RoCE vs. IB? This work focuses on RoCE.

- Reliable Connection (RC) mode of RoCE is mostly adopted.
- RoCE<sup>2</sup> semantics: one-to-one reliable connection.

|    | SEND/RECV             | WRITE                 | READ                  | Message Size |
|----|-----------------------|-----------------------|-----------------------|--------------|
| RC | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | 2 GB         |
| UC | 1                     | 1                     | ×                     | 2 GB         |
| UD | <b>√</b>              | ×                     | ×                     | 4 KB         |

Comparisons of RoCE transport modes.

<sup>1</sup>RoCE has an extension version, RoCEv2, we actually focus on RoCEv2 and use RoCE for convenient notation. <sup>2</sup>By default, RoCE refers to its RC mode

#### Mismatch Between Multicast and RoCE

- Native Multicast
  - *Multicast sender*: only send out one single copy of data.
  - *Network*: <u>replicates data at proper switches</u> and forwards the data to multiple receivers.
  - *Distribution tree*: replication is made as late as possible to reduce traffic volume.
- Pros: efficient traffic transmission
- Cons: layer-4 transport unfeasibility
  - Due to the mismatch of <u>native multicast data flow structure</u> and <u>transport's one-</u> to-one semantics, causing limited usage among applications.



No

connectivity

(a) Native multicast.



# Insufficiency of Application-layer Multicast

- Distributed frameworks, MPI, NCCL, Spark, etc., develop their private application-layer multicast (AMcast) primitives.
- AMcast: a logical multicast interface to applications, where the traffic is delivered by multiple unicast (one-to-one) transmissions.

Prof: performant end-host transport from reusing RoCE.

Much more prevalent than Native Multicast in practice.



Cons: inefficient traffic

transmission



#### **Comparing Existing Schemes**



|                  | # Hops of<br>longest<br>path | Bandwidth<br>bottleneck<br>released? | Reusing<br>commodity<br>RoCE? | # End-host<br>stack<br>experience |
|------------------|------------------------------|--------------------------------------|-------------------------------|-----------------------------------|
| NMcast           | 6 (min)                      | Yes                                  | No                            | Once                              |
| Binomial<br>Tree | 8 (mid)                      | Partially                            | Yes                           | Many                              |
| Chain            | 14 (max)                     | Yes                                  | Yes                           | Many                              |
| Cepheus          | 6 (min)                      | Yes                                  | Yes                           | Once                              |

(d) Cepheus vs. existing schemes.

- Native Multicast. High throughput and low latency; Cannot reusing RoCE.
- Binomial Tree. Latency-friendly (logarithmic latency form); Poor performance with large messages
- Chain. Throughput-friendly (BW bottleneck fully release); Longer latency (linear to the number of nodes)

### Our Goal





- Native Multicast. High throughpu Cepheusency; Cannot reusing RoCE.
- Binomial Tree. Latency-friendly (logarithmic latency form); Poor performance with large messages
- Chain. Throughput-friendly (BW bottleneck fully release); Longer latency (linear to the number of nodes)

### Intuition and Challenge



 Basic Intuition: <u>build on native multicast</u> (i.e., inherit its transmissionefficient multicast flow structure) and <u>exploit more switch</u> <u>functionalities to deliver a RoCE-capable multicast stream</u> that can be directly processed by commodity RNICs.





#### **Cepheus Design Overview**



#### **Connection Establish & Table Registration**

- Hosts follow the existing unicast-like procedure to establish one RoCE connection for each multicast group.
  - Virtual remote connection: "dstIP = McstID"
- Table registration is performed in control-plane, comprising a controller and several agents.
  - Controller collects the "IP" and "QPN" states of other hosts.









### Multicast Forwarding Table (MFT) Structure

- Every switch in the distribution tree has its local MFT, guiding its overall in-network processing logic.
- Path Index: an array that identifies whether a switch port is involved in the distributed tree.
- *Path Table*: each entry represents an outgoing path
  - Next hop is a switch
    - $\rightarrow$  Two values are marked as invalid
  - Next hop is a host
    - $\rightarrow$  Maintaining "dstIP" and "dstQP" in this entry





# Data Replication and Connection Bridging



(1) Multicast sender transmits data via commodity RoCE logic.



# RoCE-capable Feedback Handling



(1) Receivers generate ACK/NACK/CNP packets following standard RoCE logic.

(2) Feedbacks traverse distribution tree inversely, and the switches aggregate ACK/NACK and filter CNP, when there are multiple input feedback streams.

(3) Leaf switch connected to the sender modifies the packet's BTH header before forwarding the final feedback.





#### • Cepheus Testbed: an Ethernet switch, an FPGA board, and four servers.



#### • FPGA Accelerator.

- All in-network processing functions are implemented in an FPGA board, as a building block attached to the Ethernet switch.
- End-host APIs: integrated to MPI; transparent to applications; do not require any RNIC or driver modification.



- Integrating Cepheus into OpenMPI & evaluating MPI Broadcast.
- Comparing Cepheus with Binomial Tree (BT) and Chain, which are oriented for small and large messages, respectively.





#### **Evaluation: Realistic Applications**



#### Conclusion



- Cepheus is a high-performance RoCE-capable multicast solution that delivers *performance gains from both multicast and RDMA transport*.
- Cepheus opens the door for efficiently leveraging the widely adopted RDMA transport with *in-switch assistance* to accelerate collective communication patterns.
- For future works, we plan to extend Cepheus for more collective communication primitives, such as many-to-one (e.g., MPI-Reduce) and many-to-many (e.g., MPI-Alltoall).

