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Introduction

B Key motivations:
End-to-end congestion controls becomes increasingly challenging to

maintain effective due to the inherent feedback delay.

Prior flow control (FC) mechanisms either lack fine-grained (i.e.,
per-flow granularity) control or require an impractical number of
queues.

B Solution:
Aquarius, a scalable solution that maintains fine-grained per-flow
level control granularity with a practical number of queues.
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Background

B Rising link speeds result in increasingly bursty traffic
Representative production datacenter workloads:
(W1) Web Server [2], (W2) Alibaba Storage [3],
(W3) Web Search [1], (W4) Facebook Hadoop [2]
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[1] M. Alizadeh, et al. “Data center tcp (dctcp),” in Proceedings of the ACM SIGCOMM 2010 Conference.
[2] Arjun Roy, et al. “Inside the social network’s (datacenter) network”, in Proceedings of the ACM SIGCOMM 2015 Conference.
[3] Yuliang Li, et al. “HPCC: High precision congestion control”, in Proceedings of the ACM SIGCOMM 2019 Conference.



Background

B End-to-end CC alone is insufficient for managing transient
congestion

4 End-to-end CCs rely on receiver-echoed signals to adjust sending rates.
O sender requires at least one RTT to receive feedback and loses control of
flows that can complete within the first RTT.

B Per-hop flow control 23t packets
is necessary for © }{ " °
handling transient — ~ =

congestion Sender Receiver
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Motivation

Prior flow control schemes are insufficient; they either
lack fine-grained control or require an impractical
number of queues.

m PFC is coarse-grained

m [deal Flow Control is fine-grained but impractical

The ideal flow control allocates a dedicated queue to every flow, thus providing per-flow level
control. However, the per-flow queue is impractical.

B Scalability issues persist in BFC [NSDI’'22]

BFC assigns a dedicated queue to each active flow if possible and enables multiple flows
sharing a queue when there are no available queues.



BFC Scalability

B BFC requires more physical queues than the common

switch can accommodate
BFC uses 32/128 queues per port.
(1) Majority of switches are usually equipped with 8 or fewer queues
(2) Physical queues are critical resources and are typically reserved for strong
physical isolation between different tenants.
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Key ldea

Approximate the ideal flow control behavior
without requiring per-flow queues
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Key ldea

Approximate the ideal flow control behavior

without requiring per-flow queues

Two aspects:

B On the congested port

> Contribution-aware Pausing
B On the upstream port

> Opportunistic Re-assigning

T

(c) Aquarius




Aquarius
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(1 Dynamic flow mapping at every passed switch port

uniformly distribute all flows to available queues.
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® Contribution-aware Pausing
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Generating flow control frames

1 Pausing Decision:

) Fair size: [L >> [log,N1].

9

1 Records the size of each flow in Flow Table, indexed by hash(FID)

Q If 0, > Q> Q;: flow with size > fair size should be paused.
4d IfQ> Q,, all passed flow should be paused.
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© Opportunistic Re-assigning

Internal control
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Generating flow control frames

d PAUSE carries FID
1 Re-direct all congested flows to a reserved isolation queue (rsv(Q)
by controlling the flow-to-queue mapping in @.

d Resuming condition of rsv(:

1) all isolated flows have received RESUME;
O 2) previous buffered packets have been drained off
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Micro-benchmark

B Setting

NS-3 simulator
f1: 33Gbps; 2~ f4: 100Gbps.
R1 becomes the bottleneck.

B Aquarius achieves per-

flow control granularity.
Fair partition of bottleneck

link capacity between f1 to f3.

The victim flow, f4, is not
affected.

f3
fa

fi

Average throughput (Gbps)

L2

AL
2 J

L1

Micro-benchmark setting.

D
o
|

I
o
|

N
o
|

o
|

f1 f2 3 f4

(a) Aquarius

f1

f2 f3 f4

(b) BFC

Average throughput for flows f1~f4.

18



Realistic Traffic

H Setting

NS-3 simulator; 3-layer fat-tree topology; 48 switches; 128 servers
100Gbps link; 1us propagation delay; 12MB switch buffer
Web Server with a 70% average load and 5% 100-to-1 incast traffic
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Summary

B Per-hop Flow Control is Necessary but Prior Scheme is Insufficient
End-to-end CC alone is insufficient for managing transient congestion.
Prior flow control schemes either lack fine-grained control or require an impractical
number of queues.
BFC experiences considerable performance degradation when queues are limited.

m Key ldea of Aquarius
To approximate the ideal flow control behavior without requiring per-flow queues.
m Key points of Aquarius

Contribution-aware pausing, that accurately identifies the set of congested flow,
mimics the behavior of ideal FC at the congested port.

Opportunistic Re-assigning, that isolates congested flows from normal queues,
mimics the behavior of ideal FC at the upstream port.
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Thank you !

Contact email: wlicv@connect.ust.hk



Order Mark
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